Neural Networks Approach to Optimization of Steel Alloys Composition

نویسندگان

  • Petia D. Koprinkova-Hristova
  • Nikolay Tontchev
  • Silvia Popova
چکیده

The paper presents modeling of steels strength characteristics in dependence from their alloying components quantities using neural networks as nonlinear approximation functions. Further, for optimization purpose the neural network models are used. The gradient descent algorithm based on utility function backpropagation through the models is applied. The approach is aimed at synthesis of steel alloys compositions with improved strength characteristics by solving multi-criteria optimization task. The obtained optimal alloying compositions fall into martenzite region of steels. They will be subject of further experimental testing in order to synthesize new steels with desired characteristics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of micro hardness of nanostructure Cu-Cr-Zr alloys prepared by the mechanical alloying using artificial neural networks and genetic algorithm

Cu–Cr-Zr alloys had wide applications in engineering applications such as electrical and welding industrial especially for their high strength, high electrical as well as acceptable thermal conductivities and melting points. It was possible to prepare the nano-structure of these age hardenable alloys using mechanical alloying method as a cheap and mass production technique to prepare the non-eq...

متن کامل

New approach for the bainite start temperature calculation in steels

The bainite start temperature Bs is defined as the highest temperature at which ferrite can transform by a displacive transformation. A common observation is that the bainite start temperature is very sensitive to the chemical composition, indicating that the influence of solutes is more than just thermodynamic. Empirical linear regression models have long been used to calculate the Bs in a lim...

متن کامل

Comparison Study on Neural Networks in Damage Detection of Steel Truss Bridge

This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...

متن کامل

Alloy by Design - a Materials Genome Approach to Advanced High Strength Stainless Steels for Low and High Temperature Applications

We report a computational 'alloy by design' approach which can significantly accelerate the design process and substantially reduce the development costs. This approach allows simultaneously optimization of alloy composition and heat treatment parameters based on the integration of thermodynamic, thermo-kinetics and a genetic algorithm optimization route. Novel steel compositions and associated...

متن کامل

Optimizing Multiple Response Problem Using Artificial Neural Networks and Genetic Algorithm

  This paper proposes a new intelligent approach for solving multi-response statistical optimization problems. In most real world optimization problems, we are encountered adjusting process variables to achieve optimal levels of output variables (response variables). Usual optimization methods often begin with estimating the relation function between the response variable and the control variab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011